The Log-linear Group-Lasso Estimator and Its Asymptotic Properties

نویسندگان

  • YUVAL NARDI
  • ALESSANDRO RINALDO
چکیده

We define the group-lasso estimator for the natural parameters of the exponential families of distributions representing hierarchical log-linear models under multinomial sampling scheme. Such estimator arises as the solution of a convex penalized likelihood optimization problem based on the group-lasso penalty. We illustrate how it is possible to construct an estimator of the underlying log-linear model using the blocks of non-zero coefficients recovered by the group-lasso procedure. We investigate the asymptotic properties of the group-lasso estimator as a model selection method in a double-asymptotic framework, in which both the sample size and the model complexity grow simultaneously. We provide conditions guaranteeing that the grouplasso estimator is model selection consistent, in the sense that, with overwhelming probability as the sample size increases, it correctly identifies all the sets of non-zero interactions among the variables. Provided the sequences of true underlying models is sparse enough, recovery is possible even if the number of cells grows larger than the sample size. Finally, we derive some central limit type of results for the log-linear group-lasso estimator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Asymptotic Properties of The Group Lasso Estimator for Linear Models

We establish estimation and model selection consistency, prediction and estimation bounds and persistence for the group-lasso estimator and model selector proposed by Yuan and Lin (2006) for least squares problems when the covariates have a natural grouping structure. We consider the case of a fixed-dimensional parameter space with increasing sample size and the double asymptotic scenario where...

متن کامل

Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...

متن کامل

On the Asymptotic Properties of The Group Lasso Estimator in Least Squares Problems

We derive conditions guaranteeing estimation and model selection consistency, oracle properties and persistence for the group-lasso estimator and model selector proposed by Yuan and Lin (2006) for least squares problems when the covariates have a natural grouping structure. We study both the case of a fixed-dimensional parameter space with increasing sample size and the case when the model comp...

متن کامل

Sparse models and methods for optimal instruments with an application to eminent domain

We develop results for the use of LASSO and Post-LASSO methods to form firststage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic distribution and inference theory for the resulting IV estimators and provide conditions under which th...

متن کامل

Regularization with the Smooth-Lasso procedure

We consider the linear regression problem. We propose the S-Lasso procedure to estimate the unknown regression parameters. This estimator enjoys sparsity of the representation while taking into account correlation between successive covariates (or predictors). The study covers the case when p ≫ n, i.e. the number of covariates is much larger than the number of observations. In the theoretical p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007